Сокращаем расходы на рекламу в бизнесе с длинным циклом продаж

О том, как оптимизировать рекламу, если вы продаете не пиццу и сделки могут закрываться по несколько месяцев, расскажет Денис Осадчий из «DirectLine», известного агентства интернет-маркетинга.

Чтобы получить измеряемый в деньгах результат и максимум продаж, нужно использовать принципы performance-based маркетинга: настроить сквозную аналитику и оптимизировать рекламные каналы на основании достоверных данных о продажах.

Но как сократить время на принятие решений при длительных сделках и при крупных и непоточных продажах, когда данные поступают с большой задержкой? Мы практикуем гибкую аналитику, и на примере хотим рассказать, зачем, имея данные о продажах, нужно анализировать другие показатели, и как это помогает сократить неэффективные расходы.

Идея performance-based маркетинга проста и эффективна: определяем пороговый возврат инвестиций и ставим задачу в терминах продаж: «Нужно привлечь продажи на 10 млн с ROI (показатель возврата инвестиций) не менее 500%».

Далее настраиваем аналитику, чтобы учитывать все продажи, их источники, а также расходы в одном месте. Запускаем рекламу в разных системах, накапливаем данные и принимаем верные решения: в примере выше рекламные инструменты, которые дают меньше 5000 рублей прибыли на каждые вложенные 1000 рублей в рекламу — отключаем, все инструменты и кампании, которые дают больше продаж, cчитаем эффективными и продолжаем размещение в них, а наиболее эффективные кампании масштабируем, то есть вкладываем в них больше, приводим больше потенциальных покупателей и получаем больше продаж.

stevepb / pixabay.com

И это отличный план — теперь вы вкладываете только в то, что приносит деньги. Но что если вы продаете совсем не пиццу и длительность принятия решений и закрытия сделок составляет недели или даже месяцы?

Оценка каждой кампании займет 2-3 месяца. Такая ситуация характерная для B2B, оптовых продаж и продаж через дилеров, для крупных B2С-сделок, например, услуг по строительству домов, покупке авто и прочих.

Для успешного маркетинга важно тестировать разные инструменты, площадки и таргетинги. У бизнесов с крупными продажами еще и очень узкая аудитория, и для охвата этих штучных клиентов важно тестировать и использовать все доступные инструменты: рекламу в поиске и в контекстно-медийных сетях, в социальных сетях, в мобильных приложениях, на YouTube — везде, где могут быть ваши клиенты. При этом данные о продажах и эффективности инструмента у вас появятся не раньше чем через 2 месяца после запуска рекламы, когда пройдет существенная часть сделок с клиентами.

Вы сможете оплачивать рекламу во всех системах 2-3 месяца, пока не увидите закрытые сделки? И только тогда отключить те системы, что работают в минус?

Или откажетесь от тестирования всех перспективных инструментов и таргетингов, в эффективности которых вы или ваш маркетолог заранее не уверены полностью?

Скорее всего, часть таких инструментов даст вам клиентов с низкой стоимостью привлечения, и, отказавшись от них, вы сократите объем продаж и вынуждены будете привлекать клиентов из более очевидных каналов с более высокой стоимостью.

Цикл тестирования инструментов на основе данных о продажах выглядит так:

  • Тестовый запуск инструментов с относительно небольшим бюджетом;
  • Оценка эффективности каждого расхода c таким периодом сбора данных, чтобы учесть существенную долю сделок по заявкам;
  • Отключение неэффективных инструментов или таргетингов, оптимизация остальных и масштабирование вложений в инструменты, показавшие наибольшую эффективность.

Далее повторяем такие циклы запуск-оценка-корректировка.

Но нужно адаптировать схему под длинные циклы продаж, чтобы сократить расходы на неэффективные кампании, т.е. сократить период работы вслепую, пока накапливаются данные о продажах.

Именно поэтому при оптмизации кампаний для бизнесов с длительными и крупными сделками мы применяем поэтапный анализ и параллельно со сбором данных о продажах проводим анализ и оптимизацию на основании менее достоверных, но более оперативных данных.

Это могут быть данные о качестве трафика (показателей отказов, глубины просмотров), процент конверсии в обращения и звонки (еще не продажи), стоимость таких конверсий, стоимость пользователя зашедшего на страницу «Контактная информация» или страницу «Условия сотрудничества» и прочие маркеры интереса клиентов к сотрудничеству.

Это недостоверные данные: конверсия из интереса и заявок в продажи в разных таргетингах может быть очень разной, и мы еще не знаем, какой точно будет возврат инвестиций, и какая кампания пройдет по заданным в начале показателям, а какая — нет. Поэтому важно понимать, что категоричность решений должна зависеть от уровня достоверности данных.

Важно постоянно использовать все доступные индикаторы интереса к покупке и определять их еще до запуска кампании, настраивая средства аналитики для их отслеживания.

Вывод

В борьбе за клиента в digital-маркетинге выиграет тот, кто не только знает, сколько продаж ему дает каждый вложенный рубль, но и умеет максимально быстро принимать решения о корректировке стратегии, тот, кто научится в рамках performance-подхода использовать метод Fail Fast и сможет тестировать больше инструментов привлечения клиентов.

Понравилась статья? Поделиться с друзьями: